Search results

1 – 10 of over 2000
Book part
Publication date: 20 August 2018

Amit Mitra

Two-dimensional warranty policies exist for certain consumer products, such as automobiles. Here, warranty is specified in terms of the time since the sale of the product as well…

Abstract

Two-dimensional warranty policies exist for certain consumer products, such as automobiles. Here, warranty is specified in terms of the time since the sale of the product as well as mileage incurred during that period. Thus, at the time of purchasing the product, the manufacturer may offer a warranty of three years or 30,000 miles, whichever occurs first. Failures in the product within this specified period of time or mileage will be covered by the manufacturer.

In this chapter, we consider the scenario of enterprise warranty programs, where customers are given the option of extending the original warranty. Thus, the buyer could be given an option to purchase a five year—50,000 mile warranty, whichever occurs first. Of course, the buyer will be expected to pay a premium to purchase this extended warranty. Such enterprise warranty programs are also found in other consumer durables, such as refrigerators, washers, dryers, and cooking ranges.

This chapter explores determination of the decision variables, such as product price, warranty time, and usage limit under the original conditions and further, for the enterprise warranty, that is, the extended warranty time and extended usage limit, as well as the premium to be charged to the buyer who selects the extended warranty. Mathematical models are developed based on maximizing the expected unit profit by selecting an enterprise warranty program. Additionally, some other objectives are also considered based on the proportional increase in the expected unit profit due to the increased market share attained through the offering of an enterprise warranty program. Some results are obtained through consideration of various goal values of the chosen objectives.

Article
Publication date: 1 February 1996

Jaroslav Mackerle

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included…

Abstract

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included at the end of the paper presents a bibliography on the subjects retrospectively to 1985 and approximately 1,100 references are listed.

Details

Engineering Computations, vol. 13 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Tarek Zine Eddine Benhacine, Ali Nesba, Said Mekhtoub and Rachid Ibtiouen

This paper aims to deal with a modified-based approach for the evaluation of the steady state performances of three-phase self-excited induction generator (SEIG) feeding…

Abstract

Purpose

This paper aims to deal with a modified-based approach for the evaluation of the steady state performances of three-phase self-excited induction generator (SEIG) feeding single-phase load.

Design/methodology/approach

Using the symmetrical components method, the proposed approach is based on a modified model of unbalanced three-phase SEIG, which is formulated similarly to the well-known model of balanced three-phase SEIG. Owing to this modified model, the determination of the SEIG operating point amounts to the resolution of two semi-decoupled nonlinear equations for two unknowns; the magnetizing reactance and the per-unit frequency. A simple resolution method based on an iterative two-step technique is used. The results obtained by the proposed approach are compared with those given by a conventional approach and are validated experimentally.

Findings

The proposed approach is as accurate as the conventional approach. Further, for the same accuracy degree, the proposed approach permits to speed up the resolution when compared to the conventional approach, as only few iterations are required for the convergence. The proposed approach was also successfully used for the steady state analysis of SEIG under generalized unbalanced loading conditions.

Practical implications

The determination of the operating point of the generator is based on a modified model of the generator and a simple iterative resolution method. The calculation technique can be implemented on low resource controller to provide online voltage control of the SEIG.

Originality/value

The paper contains two main originalities. The first one consists in a modified formulation of the SEIG model under unbalanced loading conditions. The modified formulation permits the use of the well-known model of balanced three-phase SEIG. Unlike previous ones reported in the literature, the proposed model does not require tedious algebraic manipulations. The second originality is the use of two-step technique to solve the equations, which permits to avoid laborious mathematical derivations and manipulating high-order polynomials.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 June 2019

Atul Kumar Ray, Vasu B., O. Anwar Beg, R.S.R. Gorla and P.V.S.N. Murthy

This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting…

Abstract

Purpose

This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting non-Newtonian Casson thin film with uniform thickness over a horizontal elastic sheet emerging from a slit in the presence of viscous dissipation. The composite effects of variable heat, mass, nanoparticle volume fraction and gyrotactic micro-organism flux are considered as is hydrodynamic (wall) slip. The Buongiorno nanoscale model is deployed which features Brownian motion and thermophoresis effects. The model studies the manufacturing fluid dynamics of smart magnetic bio-nano-polymer coatings.

Design/methodology/approach

The coupled non-linear partial differential boundary-layer equations governing the flow, heat and nano-particle and micro-organism mass transfer are reduced to a set of coupled non-dimensional equations using the appropriate transformations and then solved as an nonlinear boundary value problem with the semi-numerical Liao homotopy analysis method (HAM).Validation with a generalized differential quadrature (GDQ) numerical technique is included.

Findings

An increase in velocity slip results in a significant decrement in skin friction coefficient and Sherwood number, whereas it generates a substantial enhancement in Nusselt number and motile micro-organism number density. The computations reveal that the bioconvection Schmidt number decreases the micro-organism concentration and boundary-layer thickness which is attributable to a rise in viscous diffusion rate. Increasing bioconvection Péclet number substantially elevates the temperatures in the regime, thermal boundary layer thickness, nanoparticle concentration values and nano-particle species boundary layer thickness. The computations demonstrate the excellent versatility of HAM and GDQ in solving nonlinear multi-physical nano-bioconvection flows in thermal sciences and furthermore are relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.

Research limitations/implications

The numerical study is valid for two-dimensional, unsteady, laminar Casson film flow with nanoparticles over an elastic sheet in presence of variable heat, mass and nanoparticle volume fraction flux. The film has uniform thickness and flow is transpiring from slit which is fixed at origin.

Social implications

The study has significant applications in the manufacturing dynamics of nano-bio-polymers and the magnetic field control of materials processing systems. Furthermore, it is relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.

Originality/value

The originality of the study is to address the simultaneous effects of unsteady and variable surface fluxes on Casson nanofluid transport of gyrotactic bio-convection thin film over a stretching sheet in the presence of a transverse magnetic field. Validation of HAM with a GDQ numerical technique is included. The present numerical approaches (HAM and GDQ) offer excellent promise in simulating such multi-physical problems of interest in thermal thin film rheological fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Deepika Parmar, S.V.S.S.N.V.G. Krishna Murthy, B.V. Rathish Kumar and Sumant Kumar

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures…

Abstract

Purpose

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures, such as triangle, L-shape and square-containing wavy surfaces. These porous enclosures are saturated with Cu-water nanofluid and subjected to the influence of a uniform magnetic field.

Design/methodology/approach

In the present study, Darcy’s model is used for the momentum transport equation in the porous matrix. Additionally, the Caputo time fractional derivative is introduced in the energy equation to assess the heat transfer phenomenon. Furthermore, the total entropy generation has been computed by combining the entropy generation due to fluid friction (Sff), heat transfer (Sht) and magnetic field (Smf). The complete mathematical model is further simulated using the penalty finite element method, and the Caputo time derivative term is approximated using the L1 scheme. The study is conducted for various ranges of the Rayleigh number (102Ra104), Hartmann number (0Ha20) and fractional order parameter (0<α<1) with respect to time.

Findings

It has been observed that the fractional order parameter α governs the characteristics of entropy generation and heat transfer within the selected range of parameters. The Bejan number associated with heat transfer (Beht), fluid friction (Beff) and magnetic field (Bemf) further demonstrate the dominance of flow irreversibilities. It becomes evident that the initial evolution state of streamlines, isotherms and local entropy varies according to the choice of α. Additionally, increasing Ra values from 102 to 104 shows that the heat transfer rate increases by 123.8% for a square wavy enclosure, 7.4% for a triangle enclosure and 69.6% for an L-shape enclosure. Moreover, an increase in the value of Ha leads to a reduction in heat transfer rates and entropy generation. In this case, Bemf1 shows the dominance of the magnetic field irreversibility in the total entropy generation.

Practical implications

Recently, fractional-order models have been widely used to express numerous physical phenomena, such as anomalous diffusion and dispersion in complex viscoelastic porous media. These models offer a more accurate representation of physical reality that classical models fail to capture; this is why they find a broad range of applications in science and engineering.

Originality/value

The fractional derivative model is used to illustrate the flow pattern, heat transfer and entropy-generating characteristics under the influence of a magnetic field. Furthermore, to the best of the author’s knowledge, a fractional-derivative-based mathematical model for the entropy generation phenomenon in complex porous enclosures has not been previously developed or studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 29 January 2018

Gábor Nagy, Carol M. Megehee and Arch G. Woodside

The study here responds to the view that the crucial problem in strategic management (research) is firm heterogeneity – why firms adopt different strategies and structures, why…

Abstract

The study here responds to the view that the crucial problem in strategic management (research) is firm heterogeneity – why firms adopt different strategies and structures, why heterogeneity persists, and why competitors perform differently. The present study applies complexity theory tenets and a “neo-configurational perspective” of Misangyi et al. (2016) in proposing complex antecedent conditions affecting complex outcome conditions. Rather than examining variable directional relationships using null hypotheses statistical tests, the study examines case-based conditions using somewhat precise outcome tests (SPOT). The complex outcome conditions include firms with high financial performances in declining markets and firms with low financial performances in growing markets – the study focuses on seemingly paradoxical outcomes. The study here examines firm strategies and outcomes for separate samples of cross-sectional data of manufacturing firms with headquarters in one of two nations: Finland (n = 820) and Hungary (n = 300). The study includes examining the predictive validities of the models. The study contributes conceptual advances of complex firm orientation configurations and complex firm performance capabilities configurations as mediating conditions between firmographics, firm resources, and the two final complex outcome conditions (high performance in declining markets and low performance in growing markets). The study contributes by showing how fuzzy-logic computing with words (Zadeh, 1966) advances strategic management research toward achieving requisite variety to overcome the theory-analytic mismatch pervasive currently in the discipline (Fiss, 2007, 2011) – thus, this study is a useful step toward solving the crucial problem of how to explain firm heterogeneity.

Details

Improving the Marriage of Modeling and Theory for Accurate Forecasts of Outcomes
Type: Book
ISBN: 978-1-78635-122-7

Keywords

Book part
Publication date: 6 November 2013

Amitava Mitra and Jayprakash G. Patankar

Various types of warranty programs are offered for consumer products. The two most common are a linear pro-rata warranty or a lump-sum warranty, if product failure occurs prior to…

Abstract

Various types of warranty programs are offered for consumer products. The two most common are a linear pro-rata warranty or a lump-sum warranty, if product failure occurs prior to the specified warranty time. In this chapter we consider additional types of warranty programs that allow the consumer to purchase a one-time extended warranty in the event of no failure within the initial warranty period. For the extended period, warranty may be linearly pro-rated, starting at an amount that is lower than the initial purchase price. Alternatively, for the extended period, warranty may be a lump-sum amount, that is less than the initial warranty amount. Expressions for the expected costs under each of the programs are derived. Guidelines are provided for determining the parameters of each warranty program under relevant constraints. Sensitivity analysis is also conducted to determine the effect of the problem parameters on the expected warranty costs.

Details

Applications of Management Science
Type: Book
ISBN: 978-1-78190-956-0

Keywords

Article
Publication date: 8 June 2021

C. Srinivasa Murthy and K. Sridevi

In this paper, the authors present different methods for reconfigurable finite impulse response (RFIR) filter design. Distributed arithmetic (DA)-based reconfigurable FIR filter…

Abstract

Purpose

In this paper, the authors present different methods for reconfigurable finite impulse response (RFIR) filter design. Distributed arithmetic (DA)-based reconfigurable FIR filter design is suitable for software-defined radio (SDR) applications. The main contribution of reconfiguration is reuse of registers, multipliers, adders and to optimize various parameters such as area, power dissipation, speed, throughput, latency and hardware utilizations of flip-flops and slices. Therefore, effective design of building blocks will be optimized for RFIR filter with all the above parameters.

Design/methodology/approach

The modified, direct form register structure of FIR filter contributes the reuse concept and allows utilization of less number of registers and parallel computation operations. The disadvantage of DA and other conventional methods is delay increases proportionally with filter length. This is due to different partial products generated by adders. The usage of adder and multipliers in DA-FIR filter restricts the area and power dissipation because of their complexity of generation of sum and carry bits. The hardware implementation time of an adder can be reduced by parallel prefix adder (PPA) usage based on Ling equation. PPA uses shift-add multiplication, which is a repetitive process of addition, and this process is known as Bypass Zero feed multiplicand in direct multiplication, and the proposed technique optimizes area-power product efficiently. The modified DA (MDA)-based RFIR filter is designed for 64 taps filter length (N). The design is developed by using Verilog hardware description language and implemented on field-programmable gate array. Also, this design validates SDR channel equalizer.

Findings

Both RFIR and SDR are integrated as single system and implemented on Artix-7 development board of XC7A100tCSG324 and exploited the advantages in area-delay, power-speed products and energy efficiency. The theoretical and practical comparisons have been carried out, and the results are compared with existing DA-RFIR designs in terms of throughput, latency, area-delay, power-speed products and energy efficiency, which are improved by 14.5%, 23%, 6.5%, 34.2% and 21%, respectively.

Originality/value

The DA-based RFIR filter is validated using Chipscope Pro software tool on Artix-7 FPGA in Xilinx ISE design suite and compared constraint parameters with existing state-of-art results. It is also tested the filtering operation by applying the RFIR filter on Audio signals for removal of noisy signals and it is found that 95% of noise signals are filtered effectively.

1 – 10 of over 2000